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1. INTRODUCTION

The goal in many activities or contests is not necessarily to do
vell in any absolute sense, but merely to out perform an adversary.

The objective of this paper is to provide a model for such a contest,
establish the optimality of certain procedures, and provide suitable
approximations to these optimal procedures. But before yielding to

the Mathematics of the model, we wish to fix ideas with an anecdote.

Two statisticians, Bob and Mike, engage in a contest to guess
weights of people at a party. They agree that Bob will always guess
first. Mike will then guess and finally the person in question will
say who is closer. For example on person number one Bob guessed 137
pounds. Mike then guesses 137.01 pounds and the guest declared Mike
the victor. The contest continued in a similar vein and to Bob's
dismay he won barely a quarter of the time.

Intuitively it is clear that the second guesser has an advantage,
and one of the results of Section 2 shows that this advantage is typically
as large as the 75 percent obtained by Mike in the anecdote.

To continue the story, Bob was so stunned by defeat and eager for
revenge, that he elicited the assistance of a professional weight guesser.
Mike agreed that since the new team was so powerful it should be willing
to make all of its guesses about the weights of the guests before Mike

had to state any of his guesses. The team agreed to the proposed rule

change, and Mike then proceeded to win even more convincingly than before.




The strategy used by Mike in the second case is naturally more
sophisticated than the one he used when he was matched against an
equal. This second strategy derives from an hierarchical linear
model like that studied in Lindley and Smith [8]. It is also closely
connected with the James-Stein estimator and was originally motivated
by the "Batting Average" example of Efron and Morris [3].

Our program begins by establishing in Section 2 a formal theory
of guessing contests. We also give a simple but very general
optimality result which forms the basis for the rest of the paper.

The third section determines the exact optimal strategy for second
guessing under a certain linear model. Practical approximations to this
optimal strategy are worked out in Section 4, The final section gives
& critical discussion of the various sources of difficulties inherent
in applying this theory of guessing contests. While the main point of
this paper is to provide a tractible theory of guessing contests, we
feel that the largest single point established is the approximate

optimality of the simple rule given by Equation (4.1).
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HOTELLING'S STRATEGY

The structure of our guessing model can be described by

a system of four p vectors.

Target Values:

First Guess:

Second Guesser's Hunch:

Second Guess:

The Gi

(612655 ,ep)
(Xl.xg, e ,Xp)
(Yl,Ya, oo ,Yp)

(61’62’ aee ,Gp)

represent the real values to be guessed.

(2 I

The X, are

i

guesses made by the person who goes first and all of these are assumed

to be available to the second guesser before he acts.

represent the second guesser's best estimate of the ei.

The Y

i

Finally,

the G:l. are the guesses to be announced by the second guesser.

Our principal task 18 to determine how G should be based on X

and Y.

The objective of each player is to come closer to 6

opponent, so we begin by setting

(2.1)

vhere

VJ(G,()) =

v@,0) = ¥ v,(6,6)

1

0
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The strategic objective of the second guesser is therefore to maximize

E V(G,¢), i.e., the second guesser wishes to maximize the expected
number of times his guesses come closer to the true values,

The only probabalistic assumptions to be made now are that ¢, X, Y
have a joint distribution which is continuous. This assumption is made
for convenience and avoids the ad hoc conventions required for dealing
with ties,

Now let Vi(x,Y) denote the median of the conditional distribution
of ei given X and Y. A key role in our guessing theory is played

by the following strategy:

X, e ir X, <wvy (x,Y)

X, ~€ otherwise

These strategies will subsequently be called Hotelldng Strategies

since they were essentially put forward in Hotelling [6, p. 51]. There
are broad differences between the present model and Hotelling's problem
in location economics, but the relationship seems close enough to
Justify (or even require) the name. The main fact in this section is
the following simple result:

Theorem 2.1. The Hotelling Strategies are €-optimal, that is,

€
lim E V(G ,0) = sup E V(G,¢) .
N NV G

Proof. Since any guess G1 must be on one gide or the other of xi .

we have




PO (60,1 < 1xg-0,1) < max(P* (0, < x.), PV (0, > %)) .

The basic observation about G: is that

€1imo PX’Y(IG;-Oil <k -8,1) = max(P*Y (0, < x,), P, >x,)) .
Taking expectations in the two preceeding relations and summing over
1 <1< p, the theorem is proved.

A compelling impediment to the use of Hotelling strategies is that
they require the knowledge of the joint distribution of 6, X, ¥, or at
least the knowledge of v, (X,Y)e The key task of the remainder of this
paper is to isolate some feasible circumstances where this impediment
can be overcome,

To begin, consider the strategles

X,+e¢ 1if xi<Y1

X,~e 1if xi > Yi

where the second guesser places his guess just a bit to the side of the
first guess in the direction of his own "hunch" Y.
In some cases one can sho; that these Hunch Guided Guesses are
in fact Hotelling strateglies. Certainly, if the vectors (91"’1"‘1)’
1 <1 <p are independent and 91|Y1 ~ N(Yi,os), xilei,Yi = x1|91 ~ N(Gi,oi)
then v, (X,Y) 1s on the same side of X, as Y,. This immediately
impl ies that the Hotelling and Hunch Guided strategies will then coincide
Without distributional assumptions on ¢ one can no longer speak
of the optimality of a guessing strategy, but the following result points

out a case vhere the second guesser can still realize a substantial advanteage.
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Three Quarters Theorem'. If X = X-6 and ¥ = Y-0 are identically

distributed, independent and symmetric about zero, then the Hunch Guided

Guess has probability 3/4 of winning as ¢ + 0.

Proof. As ¢ 0 the probability that the Hunch guided guesser loses
is P@A<X<0)+P0O<X%<Y) By symmetry and exchangeability this

probability also equals

2PO0<Y¥<X) =P0o<Xand0<¥)=1/4.

In a practical application of the three-quarter theorem the assumption
of identical distributions might seem to pose some difficulties. Reassur-
ingly, the result is quite robust. For example, assuming unbiased jointly
normal guesses the second guesser still wins with probability greater than
.68 when Var Y/Var X = 2.5 and wins with probability greater than .59
when Var ?/Var X = 10. (These probabilities are easily confirmed by
tables of the bivariate normal (e.g. Owen [10)).) The more detailed
assessment of robustness in guessing competitions will be dealt with in
a subsequent report, but one should note an obvious aspect of non-robust-
ness under gross changes in the model of Theorem 2.1 is that the probability
of the second guesser winning will tend to 1/2 or 1 according as

Var Y/Var X tends to » or O.

l.

A result equivalent to the above was told to the first author in 1975
by R. Chacon and was known much earlier to R. Chacon and S. Kochen. The
result was also known earlier to T. Cover in the form: Between two "equally

matched”’ basketball teams the odds are 3 to 1 in favor of the team leading
at the half.




3. GAUSSIAN GUESSING

Since Hotelling strategies have been shown to be optimal, one would
naturally like to provide a class of models in which the strategies can
be determined explicitly. The main result of this section iz to give
such explicit strategies under a multivariate normal model studied by
Lindley [8) and Lindley and Smith [9].

We write U|V for the conditional distribution of U given V,
1p for the row p-vector (1,1,...,1), and Ip for the px p
identity matrix.

Our Gaussian Model assumptions are the following:

2
9!“ ~ N(plp) GGIP)

(3.1)
2
b~ Ny, cru)
and
X,Y|6,u~ RO ,1) r)
where
2
O'XIP 0
r = Y
2
0 UYIp

The physical motives behind thi: model are that the true weights
¢ of the persons we see are viewed as independent realizations of a
single fixed random process vhich was itself once drawn from a popula-
tion of random processes. For example, the parameter p can be viewed
as a geographically fixed Quantity determined at a earlicr time by
(random) immigrations. The assumption of normality one made partially

out of traditional convenience, but also because they seem justifiable

in the weight guessing example. The structural model together with
7
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the normality lead uniquely to the Gaussian Model specified in (5.1.)

The promigsed explicit determination of the Hotelling strategy is now

possible.

Theorem 3,1. Under the preceding Gaussian Model the Hotelling strategy

is
X; +e 1 Xg < g+ (LY )[BX+(1-B)Y]
+(1-0 )[B (X, =X) + (1-B) (Y, -Y)]
N (X3 i
(3.2) Gi =
Xi-e otherwise
" o e -2)‘1 L2,
ere y =c0 (o Oy oy y O =05+Do
-1 -1
-2, = -2 -2 -2, =2 -2
Ol:c:rg(o'9 + oy +0’Y) g@ﬁ=crx(cx +UY) .

The proof of the preceeding depends on a multivariate calculation which
we have deferred to Appendix I in order to take up directly the problem

of interpreting the result.
The basic part is the mixture of means, Tyt (1-y)[BX + (1-B)Y],

which is perturbed on trial i by the "mixture" of residuals

-1
- - - - -2
e + (1-0!)[6()(1-)() + (l-B)(Yi-Y)]. The coefficient £ = 0)2((0')(2+0’Y )

appearing in these mixtures is near 0, 1/2, or 1 accordingly as
oic;‘? is near «», 1, or O. This ratio is one natural measure of
the relative abilities of the two guessers and this interpretation is

2 -
reinforced by considering the extreme cases. When U;aYg ~ « the first

o Al
& =
(0}

X'y
gets ignored. This last case is of particular interest since it

guess is essentially ignored and vhen o ~ 0 1t is the hunch which

corresponds to trying to out guess a far better informed adversary.




4. STEIN GUIDED GUESSING

The strategies just derived have the drawback that they are functions
2

of Mo cﬁ, cg, Oy and ci. Although the magnitude of o and of the
relevant variance ratios may be sufficiently understood for some eppli-
cations, the exact values of these quantities can not generally be
assumed to be known. The next objective is thus to derive reasonable
estimates to the unknown mean and variances. One benefit of this
analysis is a clearer understanding of the empirical fact [3] that

the Stein estimator performs well with respect to the reward

function V.

A Bayesian approach to the above estimations can be made along the
lines suggested in Lindley and Smith [9] but such a procedure can prove
quite complex (c.f. Discussion [9] by V. D. Barnett). The estimators
considered here are based on an empirical Bayes procedure which seems
both simple and sensible.

As before we write Z = (X,Y) and begin by transforming 2 into a
canonical form. Next we recall that 151p = pP?AP where P denotes
the p x p Helmert orthogonal matrix (c.f. [2], p. 102) and A 1is

the p x p matrix with 1 in the (1,1) position and all other entries

zero. We define (U,V) by




A straightforward calculation shows (U,V) ~ N(u*, &) where

T (2p)l/2 o (e,0)

e = (1,0,...,0) ,

2 - N
c I o I i I 0O A O
* Tpo-F 2i P 2
Z = ~ + 209; jt+ 2pc; ’
oc°I_ oI o ol Lo o0
P *p
and
2 1,2 2 1,2 2
o, =3 (UX + UY) y O_ =5 (UX - GY) .

From the canonical form above one notes that oﬁ cannot be meaningfully
estimated since there is only one degree of freedom available for its
estimation.

We now turn to the analysis of important special cases which

correspond to qualitatively different contexts.

Case A. Known Variances. We only need to estimate Bo and this

is done by maximizing the Type II likelihood (c.f. Good [5]). This

calculation easily follows from equation (A.1) of the appendix, and the

estimator obtained is

A -1 T <1 .7 -1 5,
ey = (12p Zom Z )(12p Som 12p) . é‘

This simplifies further to just i




ﬁo =BX + 1-B)Y,

so the estimated Hotelling strategy becomes

L

, X;te  if X, <a[PX+ Q-B)Y) + (1-0)[BX, + (1-8)Y, ] i
Gi = P) ;
Xi-e otherwise '

¢

R

where the parameters O and P are as specified in Theorem 3.1,

Case B. oﬁ = 0; ci = 0-3 = 52 and 0'2 unknown. The canonical

model simplifies to

0o I 0 ©

I, O L, 0
(U,v) ~N (2p)l/2“o (e,0), 8> ( P ) * 20-3( F ) ’
P

and this time estimators are easily found without carrying out the
2 2. -1

likelihood maximization. We take the estimators of Mgs T = ¢ +2ce) 1
and 62, respectively, given by
~ -1/2 %
o = (@p) Yy %
A 2,-1 ?
T = p( {: v ‘
122
an”
%2 = p-lWT .

K_
!

X
?
.
g.

]

1

In terms of X and Y we then get

11




i, =3 &+7)

0
A 1 1 — - 2 -1
T=p()_2_' [— (xi+Yi) -—= (X +1V])
i-1 V2 Y2
and
- 2
SRR N x, -1
i=1 /2
The approximate Hotelling strategy for this case is therefore
X, + f a. 1 X+Y) + 1< +Y, )
L Xgre Af X <@ 5 @)+ D) - 5 (Y
Gi =
Xi-e otherwise
where
1 2 1 1 o~ —g2, 7t
a = [{: [— (X,-Y.))] ][)E {—= (xX,+4Y,) - — X+N}7]
i i =1 2 i i J2

i=1 /2 i=1

One should note that a has a natural interpretation. It is just
the ratio (between the guesser variance) + (between the trial variance).
The optimal strategy favors using %—(fﬂ?) when Q is close to 1
and favors %(xiﬂi) when a is close to 0. Also, the strategy can
be improved slightly by replacing @ by 1 if it happens that & > 1.

2 2 2
Case C. cru = 0, Oy = cr;(

This is a case we feel to be of particular interest. Calculating

2
Known; o 0 Unknown,

as before we find that a Stein estimator determines the approximate

Hotelling strategy, but that it plays a cameo role since the strategy

12
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simplifies to just "betting on the X, side of X." This simple result

gives some theoretical justification to the otherwise somewhat mysterious
empirical fact that X performs even better than the Stein estimator in
terms of "gambler'’s"” loss on the batting average data set (c.f. Flackett's
Comment [3, p. 416] and an easy computation).

The formal analysis begins as in Case B. Since 02 = the Y

Y
is uninformative and the analysis must rest on X above. Also since
Ui = 0 the canonical form of the X's marginal model can be simplified
to

* 1/2 2., .2
~N
U " Tnge , (ox+oe)1p)

The obvious estimate of Mo is given by

A

g = X

N -1
and if we require that the estimate, Tx, of Tx- (0)2("'0;) to be unbiased,

A -2 -1
RSN

becomes the natural choice and the estimated Hotelling strategy is

Xjve  1f X <a™x + (1-&*)}(i

X, =¢ otherwise

~ o =1
where a* = min[l,&] and QG = oi(p-})[ E (Xi-x)el .
i=1

15




The direction of the guess on the side of )(:_L is determined by

* -

B*K+ (l-&*))(:1 which is precisely the Stein estimator as modified
by Lindley (c.f. [7) and the discussion following [9]).

Now since the convex combination of X and )(i will always be on
the same side of X, as X the estimated Hotelling strategy can be

more simply written as just

. Xi+€ if Xi <X
(hcl) Gi = .
X, -€ otherwise

This is an extraordinarily simple procedure in a model which we
feel may be realistic in several sporting and business contexts.
To assess the performance of this Stein-guided strategy guessing

trials were simulated for a variety of special cases. The ei were
chosen as ei = 0, 9i =1, and 91 = i3 for each of i =1,2,...,p

with p = 10 and then with p = 100; thus, in all 3 x 2

i

6 cases

were considered.

As an illustration of the computation consider the case where
ei =1 and p = 100. In this case 200 repetitions were made as
follows:

(1) X was generated as N(g,I) with 6 = (1,2,...,100),

* -6

@) G; was calculated by (4.1) with € =10 ",
(3) V was then calculated, and the process was repeated 200 times.

() The 200 realizations of V/100 were used to estimate the density

of V/100, the percentage of times the second player wins using the G*
of (k.,1).

14




(5) This density was plotted in Figure 2 (in this case, the
unshaded density in the middle graph).

From Figure A one learns by looking at the unshaded density in
the top graph that when as many as 10 parameters growing like i’lS
are to be guessed that the modal percent of correct guesses made by
the second guesser is about 95 percent. The general conclusion to be
drawn from Figure A are (1) the more parameters to be guessed, the
greater the advantage to the second guesser and () the more spread
out the Pi to be guessed, the more the advantage to the second
guesser,

In Figure B, these conclusions are further examined by taking the
ﬂi themselves to be random. Here p = 20 was fixed throughout. First
we took a realization of 6 ~ N(0, Mgo)‘ Then 200 of the X's we
generated with the same fixed underlying € (just as in Figure A).
The density of V/200 was estimated as before, and altogether 05
runs were made. The 25 runs produced remarkably similar estimates of
the density of V/200, and the estimates from runs number 1, 17, and

21 were selected as indicative of the variability in the 25 runs.

Y=

N e T el

i,




»
5 p=10
c
9
o 1 | | | 1 1 |
S
>
2
3 25 ] T -
> B =iali
B p=100
§ p=10
& \
[}
E
]
W 25
.
) 8:0alli f p=100
p=10
] | L | |
o) 5 1.0

x = proportion of p trials won by the second guesser

A. Estimated Density of the Proportion of Second Guesser Wins
Using the Stein-Guided Optimal Strategy (Based on Runs of
200 Contests ).
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Run 2|

6. rondom
t Run 17

Run |

| | 1 _:4 | | ]

.5 1.0
X = proportion of p= 20 trials won by the second guesser

B. Estimated Density of the Proportion of Second Guesser Wins in
p = 20 Trials Vsing the Stein-Guided Optimal Strategy (3 Runs
of 100 Contests and Combined Runs of 2500 Contests).
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‘"« REALITIES OF APPLICATION

Almost any discussion of the preceeding theory eventually turns to
the problem of football betting, and it seems gener:l.y worthwhile ‘.«
note why the theory is not applicable to that problem. A key reason
is that the bookie (or person "setting the line") is not trying to
estimate the actual point spread. He is trying to produce 4 point
spread which will produce a nearly equal number of takers on e¢ah side
of the spread. The bookie is therefore not a "first guesser” in th.
sense of this paper and our theory naturally does not apply.

Consider instead two bookies of equal caliber, one of whom sets
his line on Monday and the other on Tuesday (for the game on Sunday ).
If the Tuesday bookie only wished to obtain a more even distribution
of customers on either side of his line than the Monday bookie, he
should be able to do so in almost 3/4 of the games by using the ‘unch
guided guessing of Section 2, In this case, each bookie is a bona fide
guesser of that spread s which will evenly split the p ol of betlters.

Since there are actually many games each week, the Tuesday bookie
could actually out perform the Monday bookie by using the ‘tein gulded
strategy of U.ction 4, particularly (L.1)., The assumptions of (7.1) may
mot be applicable to the holr set of games; but If one considers only
non-carismatic games outside the bookie's city, then (3. ) s ems
reasonable. (This is a stratification step to cbtain incrrased homogeneity

of the spreads to be guessed, )

The examples put forward above are in the long tradition of gedunken
experimente, and the problem of producing a truly teiling appiication remains \

open. An intriguing aspect of 4 theory of this nature is that it is only

necessary to 1ind one good napplication.

1 £




Appendix I: Proof of Theorem 3.1

By Theorem 2.1 the problem depends on the calculation of the posterior
median v, (X,Y) which by the normality assumptions (%.1) coincides with
the posterior mean. The argument given here for completeness is similar
to those of Lindley (7] and Lindley and Smith [9!. It depends on the

well known fact ‘c.f. [1}, p. 27) that if U and V are jointly nomal
then

UlV ~ N(EU-EV- L + VL, Syev)

=1 -1

= ) = ) - b by
vhere FW zw, YU-V Z'UU XUV "W’ “—W denotes the covariance

matrix of V and so on.

Setting Z = (X,Y) and applying the above to {5.1) we have

(A.1) Z o~ N, (251D, 2y0)

where

- ° 0, ) - T
. diag{rrx,oy] ® Ip to, d ® Ip 0 J,® 1p1p

where @ denotes the Kronecker matrix product and J_ 1is the matrix

2
with all 1 entries. Further,
E!Z) ~E ) «E(Z)+ -+ 2.1,

where

ol

v VA A A
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with

2 2.T
.= oI +0 11 .
66 6P HPP

We now determine .- First we note that

zZ °

T T
11 -pPfarp
pp P° °

where P denotes the Helmert orthogonal matrix (c.f. [2], p. 102) and

A is the p x p matrix with 1 in the (1,1) position and all

remaining entries zero.

r One then notes that
(I, ®P) =, (I ®P)
2 A/

reduces to just
diag(o? 02} @I + 0’2J DI +W2J D4
Xy P 62 P e
which makes it straightforward to show

-1 T
Lom = (12®P ) e (I2®P)

o

/O




vhere

2 2

.2 -
O’x 0 ) (7 0] (l -1 (Ux O'y g7 0
8 = ® + ®
0 oo 0 or -1 0 0252 621

8" "p-1

where 7y and O are as in Theorem 5.1.

From these results an explicit expression for Z. ¥ is readily

obtained. We first note

T
z-¢ = (XPL,YP') o (P,PY) Zop

and
T T y 0
2 -2
a(PT,PT) = (ox 20y ) ® Py .
0 ar
p-1
Thus
T y O
: T T\, -2 =2 2 2 -2 -2
j (A.2) zZ-7 = (XP',YP )Ecrx )0y ) ®( o1 )1(091p+p0“A)P = (oy X+0,"Y)A
: p-1

Now represent X as

X =X1_ + (X-XL_) .
P P

E Then we have

x?* - %(/2,0,...,0) + 0,X (5y)

21




vhere
. - X, X2 N Y R o
@) /i3 53 157D

80

2

=qgy i(pl/2

y .

2
,o,....,o)P+caa(o,x(2))P

2 = 2 =
oYXl + g OX-X1 .
YXL 9( p)

A similar result holds for YA. Introducing the resulting expressions

for XA and YA in (A.2) yields

(A3)  (op Xy A = (1-7)(BK + (1-8)711_+(1-0)[B (X-X1)+(1-8) (¥-¥1 )]

: 2, 2 -2, 2
since 7o (0'x +oy ) = 1<y and Otcre

From the expression just obtained in (A.3) E(Z)-z and hence

(0')22+c;2 ) = 10,

E(6)-E(Z)-¢ are easily found. To get E(Z)-r simply substitute “Olp

for both X and Y. This gives
2, =2, =2
E(Z)C = 7o [ox 0y ]uolp .
At the same time E(0) = polp, so we have

? (Ab) E(6) -E(2) ¢ = 7ul

The proof of Theorem 3.1 is now an immediate consequence of (A.3)

and (A.B),




Acknowledgment

We wish to thank R. Chacon, P. Diaconis, J. Kadane, I. Olkin,
A, Pittinger, and D.-C. Wu for their comments on earlier drafts of

this paper.

v ’.h

S

ey

L
e e 1 PO Aol

4
&
d




[1]

(2]

(4]

(5]

[6]

(7]

[8]

(9]

(10]

References

Anderson, T.W. (1958), Introduction to multivariate statistical

analysis, New York: John Wiley and Sons.

Bennett, C.A. and Franklin, N.L. (1954), Statistical analysis in

chemistry and the chemical industry, New York: John Wiley and

Sons.

Efron, B. and Morris, C. (1973), "Combining possibly related

estimation problems (with discussion)," Journal of the Royal

Statistical Society, Series B, 35, 379-h2l.

Feller, W. (1966), An introduction to probability theory and its

applications, v II, New York: John Wiley and Sons.

Good, I.J. (1965), The estimation of probabilities, MIT Press.

Hotelling, H. (1929), Stability in competition," Economic Journal
22) u’l-57o

James, W. and Stein, C. (1961), "Estimation with quadratic loss,"

Proceedings Fourth Berkeley Symposium on Probability and

Statistics, 1, 361-379.
Lindley, D.V. (1971), "The estimation of many parameters,” Foundations

of Statistical Inference, Codambe, V.P. and Sprott, D.A., eds.,

Toronto: Holt, Rinehart and Winston of Canada, Ltd., 435-455.
Lindley, D.V. and Smith, A.F.M. (1972), "Bayes estimates for the

linear model (with discussion),” Journal of the Royal Statistical

Society, Series B, 34, 1-41.

Owen, D.B. (1956), "Tables for computing bivariate normal probabilities,"”

Annals of Mathematical Statistics, 27, 1075-1090.

24

e e e
& .




[11] Stein, C. (1962), "Confidence sets for the mean of a multivariate

normal distribution (with discussion)," Journal of the Royal

Statistical Society, Series B, 24, 265-296.




R

INCLASSTFTED
SECURITY CLASSIFICATION OF THIS PAGE ("en Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS

BEFORE COMPLETING FORM

Wﬁ /Aﬂ AOVT?A;:%E;oé '};

3. RECIPIENT'S CATALOG NUMSER

4. TITLE r-m-lubml »)

¢ QPTIMAL STRATEGIES FOR SECOND G,UESSERS

C\T{!ﬁi‘.’:%mu]n
7 4 TECHNICAL

-

e’ -

7_m-‘00—ﬂfa) o o =
MREL MICHAEL/ STEELE & JIM/Z.IDEK C-r.:

6. PERF

- REFONT NUNDEA

R I
/DA

’u«“/ /‘/

9. PCR'OROMNG CACaniZATION NAME AND ADDR!S’ ]
Department of Statistics _~
Stanford University
Stanford, CA 94305

NT. FRUJ'CT ‘I'AS‘

EME
AR'A & WORK UNIT NUMSZRS

NR-O4211267

.J

i

11, CONTROLLING 277ITE NAME AND ADDRESS i
Office of Naval Research f i

R I PP PP on e e

: ;EBWS;I

i Jl
Statistics and Probability Program Co 35

13."NUMBER OF PAGES

25

Arlington, Virginia 23217
> «SENC t trom Con‘rolling Ollice)

15. SECURITY CLASS, (of thie repert)

UNCLASSIFIED
15s. OECLASSIFICATION/ DOWNGRADING
SCHEOULE

16. DISTRIBL ™' T~ 3T ATIMENT /3l 'riy deport)

APPRCYZD FC2 PUBLIC RZiZASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUT 2~ T AT ZMENT [af ve abetrect sntered in Block 22, it dillerent lrom Report)

19. SUPPLEMENT -3V NCTES

DAAG29-77-G~0031.

This report partially supported under U.S. Army Research Office Grant

19. KEY “ORCS 7Canti=ue on reverse slZe If necessury and identity by dlock number)

estimator; Posterior median.

Guessing; Optimal strategies; Hierarchical linear model; Stein

20. ARSYRACT (C:rit=ue en reverse side Il necessary and identily by black number)

PLEASE SEE REVERSE SIDE.

0D .:2:."!” 1473 €oimomn OF 1 NOV 8318 OBsOLETE

UNCLASSIFIED * * > = -

$/N 0102- L5-313-560)

SECUMTY CLASITICATION OF YwiS ’AG! m- Dou U

P




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT 9. 281

OPTIMAL STRATEGIES FOR SECOND GUESSERS
/

”PA model is given for a class of contests in which the participants
try to guess (or estimate) unknown quantities, and the objective of each
player is to come closer to the unknown quantities than his adversary.

A general optimality result is proved which gives the best guessing
rules for the second guesser. These rules are first calculated exactly
in a certain hierarchical linear model, and then simpler approximate

rules are given.

$ N 0102- LF. 014- 6401
UNCLASSIFIED

SECUMITY CLASSIFICATION OF THIS PAGEWhen Dete Entered)




